Skip to content

Home

ping()

GET: /ping

Endpoint to check if the server is running.

Returns:

Name Type Description
Response

Response with status 200 if the server is running.

Source code in app.py
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
@app.get("/ping")
def ping():
    """
    # GET: /ping

    Endpoint to check if the server is running.

    Returns:
        Response: Response with status 200 if the server is running.
    """
    try:
        client = grpcclient.InferenceServerClient(
            url=config.grcp_model_server_address, verbose=False
        )
        return Response(status_code=200)
    except Exception:
        return Response(status_code=400)

predict_bucket(input_location=Header(None), inference_parameters=Header(None), webhook_url=Header(None), input_bucket_name=Header(None), output_bucket_name=Header(None), write_to_gcs=Header(False), examination_id=Header(None))

POST: /bucket_invocations

Endpoint to process an image / folder and send it to the inference server.

Headers

Input-Location: Location of the image / folder in the GCS bucket.

Webhook-Url: URL to send the results of the inference.

Input-Bucket-Name: Name of the input GCS bucket. Default is the bucket name in the config file.

Output-Bucket-Name: Name of the output GCS bucket. Default is the bucket name in the config file.

Write-To-GCS: Bool flag to write the results to a GCS bucket. False by default.

Examination-ID: ID of the examination, used to track the request results.

Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys:

- scan_width: width of the scan window.

- mm_crop_zone: how much to crop from the center of the image.

- center_coordinates: center coordinates of the image (obtained from fovea center model).

- pixel_spacing_row: pixel spacing row parameter of the exam.

- pixel_spacing_column: pixel spacing column parameter of the exam.

- low_confidence_p: low confidence probability level, initially set to 0.1.

- nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

- nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

- mm_crop_zone_nerve: how much to crop from the nerve of the image, initially set to 1.0.

Returns:

Name Type Description

JSON with the results of the inference:

filename

Name of the file that was processed. >1 if multiple files.

status

Status of the request. Can be "sent" or "error".

result_path

Path to the result in the GCS bucket. >1 if multiple files.

request_uuid

UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

Raises:

Type Description
Response

Error response if the content type is not supported or webhook url is missing.

Source code in app.py
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
@app.post("/bucket_invocations")
def predict_bucket(
    input_location: str = Header(None),
    inference_parameters: str = Header(None),
    webhook_url: str = Header(None),
    input_bucket_name: str = Header(None),
    output_bucket_name: str = Header(None),
    write_to_gcs: bool = Header(False),
    examination_id: str = Header(None),
):
    """
    # POST: /bucket_invocations

    Endpoint to process an image / folder and send it to the inference server.

    Headers:
        *Input-Location*: Location of the image / folder in the GCS bucket.

        *Webhook-Url*: URL to send the results of the inference.

        *Input-Bucket-Name*: Name of the input GCS bucket. Default is the bucket name in the config file.

        *Output-Bucket-Name*: Name of the output GCS bucket. Default is the bucket name in the config file.

        *Write-To-GCS*: Bool flag to write the results to a GCS bucket. False by default.

        *Examination-ID*: ID of the examination, used to track the request results.

        *Inference-Parameters*: Parameters to send to the inference server. JSON string with the following keys:

            - scan_width: width of the scan window.

            - mm_crop_zone: how much to crop from the center of the image.

            - center_coordinates: center coordinates of the image (obtained from fovea center model).

            - pixel_spacing_row: pixel spacing row parameter of the exam.

            - pixel_spacing_column: pixel spacing column parameter of the exam.

            - low_confidence_p: low confidence probability level, initially set to 0.1.

            - nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

            - nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

            - mm_crop_zone_nerve: how much to crop from the nerve of the image, initially set to 1.0.

    Returns:
        JSON with the results of the inference:
        filename: Name of the file that was processed. >1 if multiple files.
        status: Status of the request. Can be "sent" or "error".
        result_path: Path to the result in the GCS bucket. >1 if multiple files.
        request_uuid: UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

    Raises:
        Response: Error response if the content type is not supported or webhook url is missing.
    """
    webhook_response = _check_webhook(webhook_url, examination_id, logger)
    if webhook_response.status_code != 200:
        return webhook_response

    # get input and output locations
    input_bucket_to_use = (
        input_bucket_name if input_bucket_name is not None else config.input_bucket_name
    )
    output_bucket_to_use = (
        output_bucket_name if output_bucket_name is not None else config.output_bucket_name
    )
    images = _read_from_gcp_bucket(input_bucket_to_use, input_location, examination_id, logger)

    if not images:
        return JSONResponse(content={"error": "No images found", "examination_id": examination_id}, status_code=400)

    try:
        response = _process_images(
            images,
            inference_parameters,
            output_bucket_to_use,
            webhook_url,
            config,
            write_to_gcs,
            examination_id,
            logger=logger,
        )
        return JSONResponse(
            content={
                "filename": response["filenames"],
                "request_uuid": response["request_uuids"],
                "result_path": response["result_paths"],
                "status": "sent",
                "examination_id": examination_id,
            },
            status_code=200,
        )
    except Exception as e:
        log_message = json.dumps(
            {
                "status": "WARNING",
                "message": f"Unnexpected error while processing images: {str(e)}",
                "examination_id": examination_id,
            }
        )
        logger.warning(log_message)

        return JSONResponse(
            content={"error": str(e), "examination_id": examination_id}, status_code=400
        )

predict_bucket_azure_uae(input_location=Header(None), inference_parameters=Header(None), webhook_url=Header(None), input_bucket_name=Header(None), output_bucket_name=Header(None), write_to_gcs=Header(False), examination_id=Header(None))

POST: /bucket_invocations_azure_uae

Endpoint to process an image / folder and send it to the inference server.

Headers

Input-Location: Location of the image / folder in the Azure Blob bucket.

Webhook-Url: URL to send the results of the inference.

Input-Bucket-Name: Name of the input Azure Blob bucket. Default is the bucket name in the config file.

Output-Bucket-Name: Name of the output Azure Blob bucket. Default is the bucket name in the config file.

Write-To-GCS: Bool flag to write the results to a GCS bucket. False by default.

Examination-ID: ID of the examination, used to track the request results.

Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys:

- scan_width: width of the scan window.

- mm_crop_zone: how much to crop from the center of the image.

- center_coordinates: center coordinates of the image (obtained from fovea center model).

- pixel_spacing_column: pixel spacing column parameter of the exam.

- pixel_spacing_row: pixel spacing row parameter of the exam.

- low_confidence_p: low confidence probability level, initially set to 0.1.

- nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

- nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

- mm_crop_zone_nerve: how much to crop from the nerve of the image, initially set to 1.0.

Returns:

Name Type Description

JSON with the results of the inference:

filename

Name of the file that was processed. >1 if multiple files.

status

Status of the request. Can be "sent" or "error".

result_path

Path to the result in the Azure Blob bucket. >1 if multiple files.

request_uuid

UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

Raises:

Type Description
Response

Error response if the content type is not supported or webhook url is missing.

Source code in app.py
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
@app.post("/bucket_invocations_azure_uae")
def predict_bucket_azure_uae(
    input_location: str = Header(None),
    inference_parameters: str = Header(None),
    webhook_url: str = Header(None),
    input_bucket_name: str = Header(None),
    output_bucket_name: str = Header(None),
    write_to_gcs: bool = Header(False),
    examination_id: str = Header(None),
):
    """
    # POST: /bucket_invocations_azure_uae

    Endpoint to process an image / folder and send it to the inference server.

    Headers:
        *Input-Location*: Location of the image / folder in the Azure Blob bucket.

        *Webhook-Url*: URL to send the results of the inference.

        *Input-Bucket-Name*: Name of the input Azure Blob bucket. Default is the bucket name in the config file.

        *Output-Bucket-Name*: Name of the output Azure Blob bucket. Default is the bucket name in the config file.

        *Write-To-GCS*: Bool flag to write the results to a GCS bucket. False by default.

        *Examination-ID*: ID of the examination, used to track the request results.

        *Inference-Parameters*: Parameters to send to the inference server. JSON string with the following keys:

            - scan_width: width of the scan window.

            - mm_crop_zone: how much to crop from the center of the image.

            - center_coordinates: center coordinates of the image (obtained from fovea center model).

            - pixel_spacing_column: pixel spacing column parameter of the exam.

            - pixel_spacing_row: pixel spacing row parameter of the exam.

            - low_confidence_p: low confidence probability level, initially set to 0.1.

            - nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

            - nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

            - mm_crop_zone_nerve: how much to crop from the nerve of the image, initially set to 1.0.

    Returns:
        JSON with the results of the inference:
        filename: Name of the file that was processed. >1 if multiple files.
        status: Status of the request. Can be "sent" or "error".
        result_path: Path to the result in the Azure Blob bucket. >1 if multiple files.
        request_uuid: UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename.

    Raises:
        Response: Error response if the content type is not supported or webhook url is missing.
    """

    webhook_response = _check_webhook(webhook_url, examination_id, logger)
    if webhook_response.status_code != 200:
        return webhook_response

    # get input and output locations
    input_bucket_to_use = (
        input_bucket_name if input_bucket_name is not None else config.azure_uae_input_bucket_name
    )
    output_bucket_to_use = (
        output_bucket_name if output_bucket_name is not None else config.azure_uae_output_bucket_name
    )

    images = _read_from_azure_uae_bucket(
        input_bucket_to_use, 
        input_location, 
        config.azure_uae_connection_string, 
        examination_id, 
        logger
    )

    if not images:
        return JSONResponse(
            content={"error": "No images found", "examination_id": examination_id}, status_code=400
        )

    try:
        response = _process_images(
            images,
            inference_parameters,
            output_bucket_to_use,
            webhook_url,
            config,
            write_to_gcs,
            examination_id,
            logger=logger
        )
        return JSONResponse(
            content={
                "filename": response["filenames"],
                "request_uuid": response["request_uuids"],
                "result_path": response["result_paths"],
                "status": "sent",
                "examination_id": examination_id,
            },
            status_code=200,
        )
    except Exception as e:
        return JSONResponse(
            content={"error": str(e), "examination_id": examination_id}, status_code=400
        )

predict_image(image=File(...), inference_parameters=Header(None), webhook_url=Header(None), examination_id=Header(None))

POST: /invocations

Endpoint to process an image and send it to the inference server.

Parameters:

Name Type Description Default
image UploadFile

Image file to process (in the request body).

File(...)
Headers

Input-Location: Location of the image in the GCS bucket.

Webhook-Url: URL to send the results of the inference.

Examination-ID: ID of the examination, used to track the request results.

Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys:

- scan_width: width of the scan window.

- mm_crop_zone: how much to crop from the center of the image.

- center_coordinates: center coordinates of the image (obtained from fovea center model).

- pixel_spacing_row: pixel spacing row parameter of the exam.

- pixel_spacing_column: pixel spacing column parameter of the exam.

- low_confidence_p: low confidence probability level, initially set to 0.1.

- slice_idx: optional, index of the slice to process, needed for nerve zone cropp.

- nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

- nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

- mm_nerve_crop_zone: how much to crop from the nerve of the image, initially set to 1.0.

Returns:

Type Description

JSON with the results of the inference:

  • filename: Name of the file that was processed.
  • status: Status of the request. Can be "sent" or "error".
  • request_uuid: UUID of the request, generated by the server. Used to track the request results.

Raises:

Type Description
Response

Error response if the content type is not supported or webhook url is missing.

Source code in app.py
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
@app.post("/invocations")
def predict_image(
    image: UploadFile = File(...),
    inference_parameters: str = Header(None),
    webhook_url: str = Header(None),
    examination_id: str = Header(None),
):
    """
    # POST: /invocations

    Endpoint to process an image and send it to the inference server.

    Args:
        image (UploadFile): Image file to process (in the request body).

    Headers:
        *Input-Location*: Location of the image in the GCS bucket.

        *Webhook-Url*: URL to send the results of the inference.

        *Examination-ID*: ID of the examination, used to track the request results.

        *Inference-Parameters*: Parameters to send to the inference server. JSON string with the following keys:

            - scan_width: width of the scan window.

            - mm_crop_zone: how much to crop from the center of the image.

            - center_coordinates: center coordinates of the image (obtained from fovea center model).

            - pixel_spacing_row: pixel spacing row parameter of the exam.

            - pixel_spacing_column: pixel spacing column parameter of the exam.

            - low_confidence_p: low confidence probability level, initially set to 0.1.

            - slice_idx: optional, index of the slice to process, needed for nerve zone cropp.

            - nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app

            - nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app

            - mm_nerve_crop_zone: how much to crop from the nerve of the image, initially set to 1.0.

    Returns:
        JSON with the results of the inference:
        - filename: Name of the file that was processed.
        - status: Status of the request. Can be "sent" or "error".
        - request_uuid: UUID of the request, generated by the server. Used to track the request results.

    Raises:
        Response: Error response if the content type is not supported or webhook url is missing.
    """

    client = grpcclient.InferenceServerClient(
        url=config.grcp_model_server_address,
        verbose=False,
        channel_args=(("grpc.lb_policy_name", "round_robin"),),
    )
    model_config = client.get_model_config(
        model_name=config.model_name, model_version=config.model_version, as_json=True
    )["config"]

    content_type = image.content_type

    webhook_response = _check_webhook(webhook_url, examination_id, logger)
    if webhook_response.status_code != 200:
        return webhook_response

    if content_type not in config.available_content_types:
        return Response(
            status=415,
            content="Cannot decode image data. Is content_type correct?",
            media_type="text/plain",
        )

    try:
        contents = image.file.read()

        image_bytes = np.frombuffer(contents, dtype=np.uint8)

        img = cv2.imdecode(image_bytes, cv2.IMREAD_GRAYSCALE)
        img = img[np.newaxis, ..., np.newaxis]

        inputs = [
            grpcclient.InferInput("IMAGE", img.shape, np_to_triton_dtype(img.dtype)),
            grpcclient.InferInput("INPUT_JSON", (1, 1), "BYTES"),
        ]
        inputs[0].set_data_from_numpy(img)

        inference_params = inference_parameters.replace("'", '"')
        inputs[1].set_data_from_numpy(np.array([[inference_params]] * 1, dtype=np.object_))

        outputs = [
            grpcclient.InferRequestedOutput(model_config["output"][i]["name"])
            for i in range(len(model_config["output"]))
        ]

        request_uuid = str(uuid.uuid4())

        client.async_infer(
            model_name=config.model_name,
            model_version=config.model_version,
            inputs=inputs,
            outputs=outputs,
            callback=partial(
                result_callback,
                model_config=model_config,
                request_uuid=request_uuid,
                filename=image.filename,
                webhook_url=webhook_url,
                examination_id=examination_id,
                client=client,
                logger=logger,
            ),
        )

        return JSONResponse(
            content={
                "filename": image.filename,
                "status": "sent",
                "request_uuid": request_uuid,
                "examination_id": examination_id,
            },
            status_code=200,
        )
    except Exception as e:
        return JSONResponse(
            content={
                "message": str(e),
                "status": "error",
                "request_uuid": request_uuid,
                "examination_id": examination_id,
            },
            status_code=400,
        )