Home
ping()
GET: /ping
Endpoint to check if the server is running.
Returns:
| Name | Type | Description |
|---|---|---|
Response |
Response with status 200 if the server is running. |
Source code in app.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | |
predict_bucket(input_location=Header(None), inference_parameters=Header(None), webhook_url=Header(None), input_bucket_name=Header(None), output_bucket_name=Header(None), write_to_gcs=Header(False), examination_id=Header(None))
POST: /bucket_invocations
Endpoint to process an image / folder and send it to the inference server.
Headers
Input-Location: Location of the image / folder in the GCS bucket.
Webhook-Url: URL to send the results of the inference.
Input-Bucket-Name: Name of the input GCS bucket. Default is the bucket name in the config file.
Output-Bucket-Name: Name of the output GCS bucket. Default is the bucket name in the config file.
Write-To-GCS: Bool flag to write the results to a GCS bucket. False by default.
Examination-ID: ID of the examination, used to track the request results.
Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys:
- scan_width: width of the scan window.
- mm_crop_zone: how much to crop from the center of the image.
- center_coordinates: center coordinates of the image (obtained from fovea center model).
- pixel_spacing_row: pixel spacing row parameter of the exam.
- pixel_spacing_column: pixel spacing column parameter of the exam.
- low_confidence_p: low confidence probability level, initially set to 0.1.
- nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app
- nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app
- mm_crop_zone_nerve: how much to crop from the nerve of the image, initially set to 1.0.
Returns:
| Name | Type | Description |
|---|---|---|
|
JSON with the results of the inference: |
||
filename |
Name of the file that was processed. >1 if multiple files. |
|
status |
Status of the request. Can be "sent" or "error". |
|
result_path |
Path to the result in the GCS bucket. >1 if multiple files. |
|
request_uuid |
UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename. |
Raises:
| Type | Description |
|---|---|
Response
|
Error response if the content type is not supported or webhook url is missing. |
Source code in app.py
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | |
predict_bucket_azure_uae(input_location=Header(None), inference_parameters=Header(None), webhook_url=Header(None), input_bucket_name=Header(None), output_bucket_name=Header(None), write_to_gcs=Header(False), examination_id=Header(None))
POST: /bucket_invocations_azure_uae
Endpoint to process an image / folder and send it to the inference server.
Headers
Input-Location: Location of the image / folder in the Azure Blob bucket.
Webhook-Url: URL to send the results of the inference.
Input-Bucket-Name: Name of the input Azure Blob bucket. Default is the bucket name in the config file.
Output-Bucket-Name: Name of the output Azure Blob bucket. Default is the bucket name in the config file.
Write-To-GCS: Bool flag to write the results to a GCS bucket. False by default.
Examination-ID: ID of the examination, used to track the request results.
Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys:
- scan_width: width of the scan window.
- mm_crop_zone: how much to crop from the center of the image.
- center_coordinates: center coordinates of the image (obtained from fovea center model).
- pixel_spacing_column: pixel spacing column parameter of the exam.
- pixel_spacing_row: pixel spacing row parameter of the exam.
- low_confidence_p: low confidence probability level, initially set to 0.1.
- nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app
- nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app
- mm_crop_zone_nerve: how much to crop from the nerve of the image, initially set to 1.0.
Returns:
| Name | Type | Description |
|---|---|---|
|
JSON with the results of the inference: |
||
filename |
Name of the file that was processed. >1 if multiple files. |
|
status |
Status of the request. Can be "sent" or "error". |
|
result_path |
Path to the result in the Azure Blob bucket. >1 if multiple files. |
|
request_uuid |
UUID of the request, generated by the server. Used to track the request results. >1 if multiple files, in correspondence with the filename. |
Raises:
| Type | Description |
|---|---|
Response
|
Error response if the content type is not supported or webhook url is missing. |
Source code in app.py
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 | |
predict_image(image=File(...), inference_parameters=Header(None), webhook_url=Header(None), examination_id=Header(None))
POST: /invocations
Endpoint to process an image and send it to the inference server.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
image |
UploadFile
|
Image file to process (in the request body). |
File(...)
|
Headers
Input-Location: Location of the image in the GCS bucket.
Webhook-Url: URL to send the results of the inference.
Examination-ID: ID of the examination, used to track the request results.
Inference-Parameters: Parameters to send to the inference server. JSON string with the following keys:
- scan_width: width of the scan window.
- mm_crop_zone: how much to crop from the center of the image.
- center_coordinates: center coordinates of the image (obtained from fovea center model).
- pixel_spacing_row: pixel spacing row parameter of the exam.
- pixel_spacing_column: pixel spacing column parameter of the exam.
- low_confidence_p: low confidence probability level, initially set to 0.1.
- slice_idx: optional, index of the slice to process, needed for nerve zone cropp.
- nerve_zone_landmarks: optional, landmarks of the nerve zone returned by retinal_app
- nerve_zone_slice_indices: optional, slice indices of the nerve zone returned by retinal_app
- mm_nerve_crop_zone: how much to crop from the nerve of the image, initially set to 1.0.
Returns:
| Type | Description |
|---|---|
|
JSON with the results of the inference: |
|
|
|
|
|
|
Raises:
| Type | Description |
|---|---|
Response
|
Error response if the content type is not supported or webhook url is missing. |
Source code in app.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | |